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Abstract
It is known that magnetic fields in ideal chaotic plasmas tend to become
extremely irregular and to concentrate in a fractal set, and it is assumed that the
presence of a positive resistivity will have a smoothing effect. Here we try to
quantify this effect by proving new inequalities which, on the one hand, relate
the local and global size of velocity and magnetic field with the gradient of this
field, and on the other provide a bound of the area of generalized level surfaces.

PACS numbers: 52.35.Vd, 52.25.−b

1. Introduction

Most real plasmas are more or less turbulent, and yet their magnetic fields often have a
recognizable large-scale structure. This is worth emphasizing because in an ideal plasma
(without resistivity) the magnetic field lines are transported by the fluid flow as material
points, so we would expect that a chaotic flow will tend to produce an extremely tangled
and convoluted geometry of field lines. This indeed has been shown to be the case both in
theoretical models and in simulations [1, 2]. It has been found that the field tends to concentrate
in a fractal set of zero measure whose dimension is determined by the Lyapunov coefficients
of the flow and that the field direction follows approximately the most unstable direction of
the flow. In this way a sheet-like or rope-like structure develops, according to the number
of negative Lyapunov exponents [2, 3]. This is relevant because fast dynamos (those that
increase exponentially for some time [4, 5]) require chaotic flows and a tentative formula for
the growth rate has been proposed [3] (and criticized [6]). This formula involves the Lyapunov
coefficients and a certain cancellation exponent which essentially measures how rapidly the
field oscillates transversally to the main direction, which happens infinitely more often in the
ideal case. These results are not totally rigorous, but they appear in many models and seem
rather robust: concentration of the field in sets of progressively smaller measure is well known
and related to intermittency [7]. This has been thoroughly analysed for some chaotic flows,
such as the ABC one [8]. Although most of the studies are kinematic, i.e. the influence of the
field upon the velocity through the Lorentz force is ignored, this is perfectly reasonable as long
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as the field is small; anyway this is the way to proceed for results which do not depend on any
specific form of velocity. All plasmas, however, have a positive if very small resistivity, which
allows for reconnection and changes in the field line geometry. The fact that this diffusivity
factor is small and nevertheless not only reconnection of field lines occurs, but it is responsible
for the release of enormous amounts of magnetic energy in such spectacular phenomena
as solar flares [9], has made several authors to hypothesize that resistivity is enhanced at
the zones of fast reconnection by different processes not comprised within the framework of
standard magnetohydrodynamics. We will not make such assumptions and will not specify the
geometry of these zones; instead we take as usual a constant resistivity throughout the domain
and a generic velocity field. Of course it is known that the introduction of positive resistivity
makes the induction equation governing the evolution of the magnetic field a parabolic one
and therefore ensures to some extent smoothness of the solutions. But a vector field may be
smooth and nevertheless have a very complex field line geometry. We intend to show that,
no matter how chaotic the plasma flow is, the magnetic field is rather well behaved. The
key to obtaining the necessary estimates is the analysis of the induction equation satisfied
by any convex function of the field. This technique was introduced by Constantin [10, 11]
to study the vorticity and other magnitudes of a fluid flow. The magnetic field, however,
although formally satisfying an analogous equation, behaves in a different way: neither initial
values nor boundary conditions are tied to the velocity and so its possible configurations are
much wider. Also the emphasis is different: active regions of a plasma, where the magnetic
field is large, are more important than regions of high vorticity in a fluid, and magnetic field
lines and level surfaces are physically more meaningful and interesting than the analogous
concepts for the vorticity.

The plan of the paper is as follows: in section 2 we study the basic induction equation
satisfied by a convex function� of the magnetic fieldB and its time and space integrals. This
equation yields two different sets of estimates, according to the term one emphasizes. The first
set bounds the quadratic term involving the second derivatives of� and finds some relevant
information on the mean size of the gradient ofB. In section 3 we localize the induction
equation and make analogous estimates within a ball in the domain, extracting consequences
on the ideal picture of a wildly oscillant magnetic field. The second possibility is to consider
the quadratic term simply as positive and bound the remaining equation, a procedure followed
in section 4. This approach is particularly useful for studying the area of generalized level
surfaces: sets of the form�(B) = const, which include the classical level surfaces of constant
magnitude as a particular case. These areas are bounded with surprising independence of
�, indicating that the field geometry cannot be too complicated. Finally, the results are
summarized in section 5.

2. Global estimates

The magnetic field within an incompressible plasma of velocityu and resistivityη satisfies,
in the magnetohydrodynamic (MHD) approximation, the induction equation(

∂

∂t
+ u · ∇ − η�

)
B = B · ∇u (1)

plus some initial and boundary conditions. We will always assume that the fluid does not
cross the (smooth) boundary of the domain under consideration, i.e.u · n|∂� = 0, and that the
normal component of the magnetic field also vanishes there:B · n|∂� = 0. These are the only
hypotheses; obviously the final estimates will be better if the velocity has good boundedness
properties, but this is not necessary for our argument.
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Let � be a smooth nonnegative convex function defined in the whole space (or simply
in any open set containing the range ofB) such that we knowa priori that � ◦ B (i.e.
the composition of both functions) decreases towards the boundary, in the sense that
∂(�◦B)/∂n|∂� � 0. This may be guaranteed, for instance, ifB satisfies a Dirichlet condition
B|∂� = 0 and�(0)= 0. Another possibility is as follows: since usually one studies the
domain where the action takes place and outside which the magnetic field is smaller, it often
occurs that∂B2/∂n|∂� � 0. Then any function�(B) = g(B2), with g a positive convex
function, satisfies the requirement.

After some cumbersome, but essentially straightforward, integral inequalities (appendix
A), one finds

1

T

∫ T

0

∫
�

∇B · (�′′ ◦ B) · ∇B dV dt

� 2

ηT

∫
�

� ◦ B(0) dV +
1

η2T

∫ T

0

∫
�

|B|2u · (�′′ ◦ B) · u dV dt . (2)

Now, the first term on the right-hand side is divided byT and therefore grows increasingly
irrelevant with time. The interest of this inequality is that it provides a collection of bounds
on∇B, depending on the convex funtion�. The simplest bound is obtained from�(x) = x2,
yielding�′′ = 2I ; this shows that theL2-norm of∇B, measuring the quadratic mean of the
gradient of the magnetic field, cannot be too large if the intensity of the field and velocity are
not (for instance, if theL4-norms of them are bounded). Note that this is not a classical energy
inequality [14], which demands the use of the full MHD system including the momentum
equation and obtains a different scaling.

Obviously the advantages of (2) are due to the flexibility on the choosing of�. As an
example, assume thatB2 decreases towards the boundary. Then take�(x) = g(x2), g′ >
0, g′′ > 0. Then (2) becomes (appendix B)

1

T

∫ T

0

∫
�

2g′(B2)|∇B|2 + g′′(B2)|∇(B2)|2 dV dt � 2

ηT

∫
�

g(B(0)2) dV

+
1

η2T

∫ T

0

∫
�

B2(2g′(B2)|u|2 + 4g′′(B2)(u · B)2) dV. (3)

The previous inequality yields different insights according to the larger differential of
g. For instance, if one takesg(x) = exp(αx), with α > 0 large, g′(B2) = αg(B2),
g′′(B2) = α2g(B2). Hence the largest factor isg′′(B2) = α2 exp(αB2). If we omit the
remaining terms, the inequality becomes approximately

1

T

∫ T

0

∫
�

exp(αB2)|∇(B2)|2 dV dt � 4

η2T

∫ T

0

∫
�

B2 exp(αB2)(u · B)2 dV dt . (4)

Assume that velocity and field are nearly orthogonal in the domain. Then the right-hand
integral is small and so must the left-hand one be, soB should be almost constant in�. The
assumption may seem excessive, but it may occur in certain cases: if we study the alfvénic
oscillations of an equlibrium magnetic field, the velocity is orthogonal to the equilibrium field,
while the product of the perturbed velocity and field is quadratically small compared to the
size of the perturbations. Hence for the alfvénic oscillations to represent the largest part of the
perturbed velocity, the equilibrium field must be roughly constant in size. As another example,
several simplified models consider a plasma flow in a plane with an orthogonal magnetic field
[12].

Another nontrivial application is that the variation of any component of the field may be
bounded by the same component of the velocity. Take for simplicity the componentB1, and
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choose�(x) = g(x1), g′′ > 0. We are left with

1

T

∫ T

0

∫
�

g′′(B1)|∇B1|2 dV dt � 2

ηT

∫
�

g(B1(0)) dV +
1

η2T

∫ T

0

∫
�

B2g′′(B1)u
2
1 dV dt (5)

so that the only influence of the remaining velocity components is through the termB2, which
of course depends onu. Of course the same may be done withB · e for any constant vectore.

3. Local estimates

The previous technique may be applied to study the local structure of the field. Take as� any
nonnegative convex function without bothering for the behaviour of� ◦ B at the boundary,
and letf � 0 be any time-independent, smooth function whose support is contained within
�. By an argument similar to the previous ones (appendix C), one gets

η

2

∫ T

0

∫
�

f∇B · (�′′ ◦ B) · ∇B dV dt

�
∫
�

f�(B(0)) dV +
1

2η

∫ T

0

∫
�

fB2u · �′′(B) · u dV dt

+

∣∣∣∣
∫ T

0

∫
�

(� ◦ B)(u · ∇f + η�f ) dV dt

∣∣∣∣
+

∣∣∣∣
∫ T

0

∫
�

(B · ∇f )(∇�(B) · u) dV dt

∣∣∣∣. (6)

We now particularizef and�. Take a pointx0 ∈ � such that the ballB2r of centrex0
and radius 2r is contained in�. Let f be such that its value is 1 atBr , its support is contained
in B2r , |∇f | � 2/r, |�f | � 6/r2. As for�, since we are working in a small ball, its global
behaviour does not matter too much. We simply set�(x) = |x − B0|2, whereB0 = B(x0); of
courseB0 depends on time. Then∇�(B) = 2(B − B0),�

′′ = 2I . Therefore

1

T

∫ T

0

∫
Br

|∇B|2 dV dt � 2

ηT

∫
B2r

|B(0)− B0(0)|2 dV +
1

η2T

∫ T

0

∫
B2r

B2u2 dV dt

+
4

ηrT

∫ T

0

∫
B2r

u|B − B0|2 dV dt +
12

r2T

∫ T

0

∫
B2r

|B − B0|2 dV dt

+
8

ηrT

∫ T

0

∫
B2r

uB|B − B0| dV dt . (7)

To understand the implications of this formula, we must realize that typically|B − B0| scales
like Mr. Unless larger and larger jumps ofB exist within the ball,M is bounded through
time. Note that in the right-hand side integrals there are no gradients and we may assume that
any kind of mean ofu andB within the ball has an order ofNr3, with N bounded in time: i.e.
there are no unbounded concentrations of velocity or magnetic flux within the ball. Therefore,
we now assume thatB andu remain bounded in the ball for all time. Since the small parameters
are normallyη andr, we are left with a bound

1

T

∫ T

0

∫
Br

|∇B|2 dV dt � C
r3

η2 (8)

so that the integral of|∇B|2 scales at most asr3/η2. Since the volume ofBr scales liker3,
we may rearrange (8) by(

1

T

∫ T

0

1

Vol(Br)

∫
Br

|∇B|2 dV dt

)1/2

� C

η
. (9)
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Let us compare this formula with the classical energy inequality. When the normal components
of u andB vanish at the boundary, and both remain bounded (say byM) in � for t ∈ [0, T ],
one gets by elementary integrations

1

T

∫ T

0

∫
�

|∇B|2 dV dt � 1

T η

∫
�

B(0)2 dV +
M4Vol(�)

η2 . (10)

The first term of the right-hand side becomes irrelevant for largeT. The second one is
analogous to (9), but it represents an integral over the whole domain. Thus we have proved
that the classical bound showing that the gradient ofB within � has at most an order 1/η,
may be refined to account for local means ofu andB. Hence it cannot occur that in a certain
portion of the domain the field may oscillate wildly, while making up for this behaviour by
being almost constant in the rest of the domain.

4. Generalized level surfaces

Now we will not concentrate on the quadratic term in∇B, but on the remaining portion of
the equation. LetF = � ◦ B. Our purpose is to analyse the mean area of the level surfaces
F = �(B) = const. Let Sr be the setF = �(B) = r, r � 0. It is known [13] that for almost
everyr, Sr is a smooth surface (varying with time). For a certainr, Sr can fail to be a surface
and may fill an open set of�, but this may only happen for a set ofr’s of measure zero. It is
also known that ifG is continuous in�,∫

�

G|∇F | dV =
∫ ∞

0
dr

∫
Sr

G dσ (11)

where dσ represents the measure of area. Letφ be any arbitrary smooth function defined in
[0,∞) and vanishing outside a bounded interval. Assume that theL2-norm of∇u remains
bounded in time. LetM� denote the maximum of|∇�| within the range ofB. Then one may
prove (appendix D) that

1

T

∫ T

0

∫
�

φ(F)2|∇F |2 dV dt � C

η
M�‖φ‖2

2 (12)

whereC is a constant. TakeG = φ ◦ F , which is constant inSr . Then∫
�

φ(F)|∇F | dV =
∫ ∞

0
φ(r)A(Sr) dr (13)

and, denoting byAT (Sr) the mean area

AT (Sr ) = 1

T

∫ T

0
A(Sr) dt

we get

1

T

∫ T

0

∫
�

φ(F)|∇F | dV =
∫ ∞

0
φ(r)AT (Sr ) dr. (14)

By the inequality of Cauchy–Schwarz,

1

T

∫ T

0

∫
�

φ(F)|∇F | dV dt � Vol(�)1/2
(

1

T

∫ T

0

∫
�

φ(F)2|∇F |2 dV dt

)1/2

�
(

Vol(�)CM�

η

)1/2

‖φ‖2 (15)
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where Vol(�) denotes as before the volume of�. The inequality∫ ∞

0
φ(r)AT (Sr) dr �

(
Vol(�)CM�

η

)1/2

‖φ‖2 (16)

valid for a set of test functionsφ dense inL2[0,∞), yields∫ ∞

0
AT (Sr)

2 dr � Vol(�)CM�

η
. (17)

Although this is a bound on the mean area ofSr , the integral is also influenced by how rapidly�
varies, so that for the same geometrical surfaces one function could have a much longer interval
of variation than another one and the integral on the left side would be correspondingly larger.
Take for instance the usual level setsB2 = const. They are the generalized level surfaces
associated to�(x) = x2, but also to�(x) = h(x2), for any increasing and convexh. If h
increases rapidly the integral would be larger without a change in the surfaces themselves. A
possible way to compensate this is to divide byM�, which normalizes the integral in a sense,
at least for functions whose gradient does not vary too much in the range of possibleB’s.
Thus

1

M�

∫ ∞

0
AT (Sr)

2 dr � m(�)C

η
(18)

which is our main bound in this section. It says that the level surfaces cannot be too complicated
in the mean and therefore to have a large area. Note that the right-hand term does not depend
on�.

5. Conclusions

The study of the evolution equation satisfied by any convex function of the magnetic field
within a diffusive plasma provides a new estimate on the integral of the gradient of the field,
which includes as a particular case the classical energy inequality. By particularizing this
convex function to those depending on the field magnitude, new relations with the behaviour
of the field gradient and the orthogonality of field and velocity emerge. These estimates may
also be obtained locally, and prove that the variation of the field within a ball may be bounded
by quantities depending only on the local size of the magnetic field and velocity. The same
procedure allows us to bound the mean area of generalized level surfaces. All these results
tend to show that the field is rather regular for a positive diffusivity, even if the plasma flow is
chaotic, so that large-scale structures may be recognizable.
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Appendix A

LetF = � ◦ B. By elementary operations,

∂F

∂t
= (∇� ◦ B)

∂B
∂t (19)

u · ∇F = (∇� ◦ B) · (u · ∇B)

�F = (∇� ◦ B) · �B + ∇B · (�′′ ◦ B) · ∇B
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where the last term means
∑

i,j,k(∂
2
j,k� ◦ B)∂iBj ∂iBk.

ThereforeF satisfies the equation(
∂

∂t
+ u · ∇ − η�

)
F = (∇� ◦ B)

(
∂

∂t
+ u · ∇ − η�

)
B − η∇B · (�′′ ◦ B) · ∇B

= (∇� ◦ B) · (B · ∇u)− η∇B · (�′′ ◦ B) · ∇B. (20)

Let us integrate in� all the terms of the equation. Sinceu · n|∂� = 0,∫
�

u · ∇F dV =
∫
∂�

Fu · n dσ = 0. (21)

Also ∫
�

∂F

∂t
dV = ∂

∂t

∫
�

F dV (22)

∫
�

η∇F dV = η

∫
�

∂F

∂n
dσ � 0. (23)

As for the integral of(∇� ◦ B) · (B · ∇u), it may be bounded in several ways. For the present
purpose we useB · n|∂� = 0 to get∫

�

(∇� ◦ B) · (B · ∇u) dV = −
∫
�

B · ∇(∇� ◦ B) · u dV. (24)

The right-hand integrand is∑
i,j

Bj ∂j (∂i� ◦ B)ui =
∑
i,j,k

Bj

(
∂2
k,i� ◦ B

)
(∂jBk)ui =

∑
j

Bju · (�′′ ◦ B) · ∂jB. (25)

Let us denote byb(v,w) the positive bilinear form given at a certain pointx by the matrix
�′′(B(x)), and let‖ ‖� be its associated seminorm. By the Cauchy–Schwarz’s inequality,∣∣∣∣
∑
j

Bjb(u, ∂jB)

∣∣∣∣ �
∑
j

|Bj |‖u‖�‖∂jB‖� �
∑
j

η

2
‖∂jB‖2

� +
1

2η
|Bj |2‖u‖2

� (26)

so that the integral of the right-hand side of (24) is bounded by

−η

2

∫
�

∑
j

‖∂jB‖2
� dV +

1

2η

∫
�

|B|2‖u‖2
� dV. (27)

Integrating in also time equation (20) and using the fact that� � 0,

1

T

∫ T

0

∫
�

∇B · (�′′ ◦ B) · ∇B dV dt

� 2

ηT

∫
�

� ◦ B(0) dV +
1

η2T

∫ T

0

∫
�

|B|2u · (�′′ ◦ B) · u dV dt (28)

which is the desired inequality.

Appendix B

Since

∂2
i,j�(x) = 4g′′(x2)xixj + 2g′(x2)δi,j (29)
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we have

�′′(B) = 2g′(B2)I + 4g′′(B2)BiBj

∇B · �′′(B) · ∇B = 2g′(B2)|∇B|2 + 4g′′(B2)
∑
i,j,k

BiBj ∂kBi∂kBj

=2g′(B2)|∇B|2 + g′′(B2)|∇(B2)|2. (30)

Also

u · �′′(B) · u = 2g′(B2)|u|2 + 4g′′(B2)
∑
i,j

BiBjuiuj = 2g′(B2)|u|2 + 4g′′(B2)(u · B)2.

(31)

Thus

1

T

∫ T

0

∫
�

2g′(B2)|∇B|2 + g′′(B2)|∇(B2)|2 dV dt � 2

ηT

∫
�

g(B(0)2) dV

+
1

η2T

∫ T

0

∫
�

B2(2g′(B2)|u|2 + 4g′′(B2)(u · B)2) dV. (32)

Appendix C

DefineF = f (� ◦ B). We have now

∂F

∂t
= f (∇� ◦ B)

∂B
∂t

u · ∇F = (� ◦ B)u · ∇f + f (∇� ◦ B) · (u · ∇B)
(33)

�F = (� ◦ B)�f + 2∇f · ((∇� ◦ B) · ∇B)

+f (∇� ◦ B) · �B + f∇B · (�′′ ◦ B) · ∇B.

And therefore(
∂

∂t
+ u · ∇ − η�

)
F = f (∇� ◦ B)

(
∂

∂t
+ u · ∇ − η�

)
B + (� ◦ B)(u · ∇f )

− η(� ◦ B)�f − 2η∇f · ((∇� ◦ B) · ∇B)− ηf∇B · (�′′ ◦ B) · ∇B

= f (∇� ◦ B) · (B · ∇u) + (� ◦ B)(u · ∇f )
− η(� ◦ B)�f − ηf∇B · (�′′ ◦ B) · ∇B. (34)

SinceF has compact support contained in�, the integral of the left-hand term is

∂

∂t

∫
�

F dV.

Also, ∫
�

(� ◦ B)�f dV = −
∫
�

∇f · ((∇� ◦ B) · ∇B) dV

so that, integrating the whole equation,

η

∫
�

f∇B · (�′′ ◦ B) · ∇B dV = − ∂

∂t

∫
�

F dV +
∫
�

(� ◦ B)(u · ∇f + η�f )

+f (∇� ◦ B) · (B · ∇u) dV. (35)

The term ∫
�

f (∇� ◦ B) · (B · ∇u) dV
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equals

−
∫
�

B · ∇(f∇� ◦ B) · u dV = −
∫
�

f
∑
j

Bju · �′′(B) · ∂jB + (B · ∇f )(∇�(B) · u) dV.

(36)

Hence

η

∫
�

f∇B · (�′′ ◦ B) · ∇B dV +
∫
�

f
∑
j

Bju · �′′(B) · ∂jB dV = − ∂

∂t

∫
�

F dV

+
∫
�

(� ◦ B)(u · ∇f + η�f ) dV −
∫
�

(B · ∇f )(∇�(B) · u) dV. (37)

Using as before the inequality of Cauchy–Schwarz, now with the matrixf�′′(B), we get∣∣∣∣
∫
�

f
∑
j

Bju · �′′(B) · ∂jB dV

∣∣∣∣
� η

2

∫
�

f∇B · (�′′ ◦ B) · ∇B dV +
1

2η

∫
�

fB2u · �′′(B) · u dV. (38)

Integrating in time and using the above inequality,

η

2

∫ T

0

∫
�

f∇B · (�′′ ◦ B) · ∇B dV dt

�
∫
�

f�(B(0)) dV +
1

2η

∫ T

0

∫
�

fB2u · �′′(B) · u dV dt

+

∣∣∣∣
∫ T

0

∫
�

(� ◦ B)(u · ∇f + η�f ) dV dt

∣∣∣∣
+

∣∣∣∣
∫ T

0

∫
�

(B · ∇f )(∇�(B) · u) dV dt

∣∣∣∣ (39)

which is the stated formula.

Appendix D

Letψ be any increasing smooth function defined in [0,∞) and takeH = ψ ◦ F . As before,
we have

∂H

∂t
= ψ ′(F )

∂F

∂t

u · ∇H = ψ ′(F )(u · ∇F) (40)

�H = ψ ′(F )�F +ψ ′′(F )|∇F |2.
ThereforeH satisfies(
∂

∂t
+ u · ∇ − η�

)
H = ψ ′(F )

(
∂

∂t
+ u · ∇ − η�

)
F − ηψ ′′(F )|∇F |2

= ψ ′(F )(∇� ◦ B) · (B · ∇u)− ηψ ′(F )∇B · (�′′ ◦ B) · ∇B − ηψ ′′(F )|∇F |2
� ψ ′(F )(∇� ◦ B) · (B · ∇u)− ηψ ′′(F )|∇F |2. (41)

In the following argument we will use a bound on theL2 norm of∇u, which we had avoided
so far, but that for our present purpose seems simpler. We could as well do as in the previous
proofs and reduce the integral of(∇� ◦ B) · (B · ∇u) to a term involvingB2u · �′′(B) · u,
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but now we are not as interested as before in avoiding all gradients for our estimate. Note
that in three dimensions the only magnitudes which area priori bounded are the kinetic and
magnetic energy, i.e. theL2 norms ofu andB [14], although in dimension 2 the same is true
of the enstrophy (theL2-norm of ∇u). Recall that the size of∇u has little to do with the
chaotic character of the flow.

Integrating the above inequality in� and assuming as before that∂F/∂n � 0, which
implies∂H/∂n � 0, we are left with

∂

∂t

∫
�

H dV + η
∫
�

ψ ′′(F )|∇F |2 dV �
∫
�

ψ ′(F )(∇� ◦ B) · (B · ∇u) dV (42)

i.e.

1

T

∫ T

0

∫
�

ψ ′′(F )|∇F |2 dV dt

� 1

ηT

∫
�

ψ(F(0)) dV +
1

ηT

∫ T

0

∫
�

ψ ′(F )(∇� ◦ B) · (B · ∇u) dV dt . (43)

The integrand of the last integral is bounded byψ ′(F )M�B|∇u|.
Let us take asψ the second primitive of the square of the arbitrary compact-supported

functionφ,

ψ(s) =
∫ s

0
(s − v)φ(v)2 dv. (44)

Then

ψ ′(s) =
∫ s

0
φ(v)2 dv

ψ ′′(s) = φ(s)2.

Hence, denoted by

‖φ‖2 =
(∫ ∞

0
φ(v)2 dv

)1/2

we have

ψ(s) � s‖φ‖2
2

ψ ′(s) � ‖φ‖2
2.

Therefore

1

T

∫ T

0

∫
�

φ(F)2|∇F |2 dV dt � 1

ηT
‖φ‖2

2

∫
�

F(0) dV +
1

ηT
M�‖φ‖2

2

∫ T

0

∫
�

|B||∇u| dV dt

� 1

ηT
‖φ‖2

2M�

∫
�

B(0) dV +
1

η
‖φ‖2

2M�

(
1

T

∫ T

0

∫
�

B2 dV dt

)1/2

×
(

1

T

∫ T

0

∫
�

|∇u|2 dV dt

)1/2

. (45)

Assume now that the right hand parenthesis (whose only doubtful term is the integral of|∇u|2)
is bounded byC. Then

1

T

∫ T

0

∫
�

φ(F)2|∇F |2 dV dt � C

η
M�‖φ‖2

2 (46)

as desired.
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Appl. Sci. 20 891
[13] Maz’ja G 1985Sobolev Spaces (New York: Springer)
[14] Temam R 1988Infinite-Dimensional Dynamical Systems in Mechanics and Physics (New York: Springer)


